Copied to
clipboard

G = C7×C422C2order 224 = 25·7

Direct product of C7 and C422C2

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C7×C422C2, C422C14, C4⋊C45C14, (C4×C28)⋊3C2, C22⋊C4.2C14, C23.3(C2×C14), C14.46(C4○D4), (C2×C28).68C22, (C2×C14).81C23, (C22×C14).3C22, C22.16(C22×C14), (C7×C4⋊C4)⋊14C2, C2.9(C7×C4○D4), (C2×C4).8(C2×C14), (C7×C22⋊C4).5C2, SmallGroup(224,161)

Series: Derived Chief Lower central Upper central

C1C22 — C7×C422C2
C1C2C22C2×C14C22×C14C7×C22⋊C4 — C7×C422C2
C1C22 — C7×C422C2
C1C2×C14 — C7×C422C2

Generators and relations for C7×C422C2
 G = < a,b,c,d | a7=b4=c4=d2=1, ab=ba, ac=ca, ad=da, bc=cb, dbd=bc2, dcd=b2c-1 >

Subgroups: 84 in 60 conjugacy classes, 40 normal (10 characteristic)
C1, C2, C2, C4, C22, C22, C7, C2×C4, C23, C14, C14, C42, C22⋊C4, C4⋊C4, C28, C2×C14, C2×C14, C422C2, C2×C28, C22×C14, C4×C28, C7×C22⋊C4, C7×C4⋊C4, C7×C422C2
Quotients: C1, C2, C22, C7, C23, C14, C4○D4, C2×C14, C422C2, C22×C14, C7×C4○D4, C7×C422C2

Smallest permutation representation of C7×C422C2
On 112 points
Generators in S112
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)(64 65 66 67 68 69 70)(71 72 73 74 75 76 77)(78 79 80 81 82 83 84)(85 86 87 88 89 90 91)(92 93 94 95 96 97 98)(99 100 101 102 103 104 105)(106 107 108 109 110 111 112)
(1 99 43 94)(2 100 44 95)(3 101 45 96)(4 102 46 97)(5 103 47 98)(6 104 48 92)(7 105 49 93)(8 62 112 56)(9 63 106 50)(10 57 107 51)(11 58 108 52)(12 59 109 53)(13 60 110 54)(14 61 111 55)(15 66 24 71)(16 67 25 72)(17 68 26 73)(18 69 27 74)(19 70 28 75)(20 64 22 76)(21 65 23 77)(29 79 40 85)(30 80 41 86)(31 81 42 87)(32 82 36 88)(33 83 37 89)(34 84 38 90)(35 78 39 91)
(1 50 39 66)(2 51 40 67)(3 52 41 68)(4 53 42 69)(5 54 36 70)(6 55 37 64)(7 56 38 65)(8 90 23 105)(9 91 24 99)(10 85 25 100)(11 86 26 101)(12 87 27 102)(13 88 28 103)(14 89 22 104)(15 94 106 78)(16 95 107 79)(17 96 108 80)(18 97 109 81)(19 98 110 82)(20 92 111 83)(21 93 112 84)(29 72 44 57)(30 73 45 58)(31 74 46 59)(32 75 47 60)(33 76 48 61)(34 77 49 62)(35 71 43 63)
(8 112)(9 106)(10 107)(11 108)(12 109)(13 110)(14 111)(15 24)(16 25)(17 26)(18 27)(19 28)(20 22)(21 23)(50 71)(51 72)(52 73)(53 74)(54 75)(55 76)(56 77)(57 67)(58 68)(59 69)(60 70)(61 64)(62 65)(63 66)(78 94)(79 95)(80 96)(81 97)(82 98)(83 92)(84 93)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 99)

G:=sub<Sym(112)| (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,99,43,94)(2,100,44,95)(3,101,45,96)(4,102,46,97)(5,103,47,98)(6,104,48,92)(7,105,49,93)(8,62,112,56)(9,63,106,50)(10,57,107,51)(11,58,108,52)(12,59,109,53)(13,60,110,54)(14,61,111,55)(15,66,24,71)(16,67,25,72)(17,68,26,73)(18,69,27,74)(19,70,28,75)(20,64,22,76)(21,65,23,77)(29,79,40,85)(30,80,41,86)(31,81,42,87)(32,82,36,88)(33,83,37,89)(34,84,38,90)(35,78,39,91), (1,50,39,66)(2,51,40,67)(3,52,41,68)(4,53,42,69)(5,54,36,70)(6,55,37,64)(7,56,38,65)(8,90,23,105)(9,91,24,99)(10,85,25,100)(11,86,26,101)(12,87,27,102)(13,88,28,103)(14,89,22,104)(15,94,106,78)(16,95,107,79)(17,96,108,80)(18,97,109,81)(19,98,110,82)(20,92,111,83)(21,93,112,84)(29,72,44,57)(30,73,45,58)(31,74,46,59)(32,75,47,60)(33,76,48,61)(34,77,49,62)(35,71,43,63), (8,112)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94)(79,95)(80,96)(81,97)(82,98)(83,92)(84,93)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99)>;

G:=Group( (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63)(64,65,66,67,68,69,70)(71,72,73,74,75,76,77)(78,79,80,81,82,83,84)(85,86,87,88,89,90,91)(92,93,94,95,96,97,98)(99,100,101,102,103,104,105)(106,107,108,109,110,111,112), (1,99,43,94)(2,100,44,95)(3,101,45,96)(4,102,46,97)(5,103,47,98)(6,104,48,92)(7,105,49,93)(8,62,112,56)(9,63,106,50)(10,57,107,51)(11,58,108,52)(12,59,109,53)(13,60,110,54)(14,61,111,55)(15,66,24,71)(16,67,25,72)(17,68,26,73)(18,69,27,74)(19,70,28,75)(20,64,22,76)(21,65,23,77)(29,79,40,85)(30,80,41,86)(31,81,42,87)(32,82,36,88)(33,83,37,89)(34,84,38,90)(35,78,39,91), (1,50,39,66)(2,51,40,67)(3,52,41,68)(4,53,42,69)(5,54,36,70)(6,55,37,64)(7,56,38,65)(8,90,23,105)(9,91,24,99)(10,85,25,100)(11,86,26,101)(12,87,27,102)(13,88,28,103)(14,89,22,104)(15,94,106,78)(16,95,107,79)(17,96,108,80)(18,97,109,81)(19,98,110,82)(20,92,111,83)(21,93,112,84)(29,72,44,57)(30,73,45,58)(31,74,46,59)(32,75,47,60)(33,76,48,61)(34,77,49,62)(35,71,43,63), (8,112)(9,106)(10,107)(11,108)(12,109)(13,110)(14,111)(15,24)(16,25)(17,26)(18,27)(19,28)(20,22)(21,23)(50,71)(51,72)(52,73)(53,74)(54,75)(55,76)(56,77)(57,67)(58,68)(59,69)(60,70)(61,64)(62,65)(63,66)(78,94)(79,95)(80,96)(81,97)(82,98)(83,92)(84,93)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,99) );

G=PermutationGroup([[(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63),(64,65,66,67,68,69,70),(71,72,73,74,75,76,77),(78,79,80,81,82,83,84),(85,86,87,88,89,90,91),(92,93,94,95,96,97,98),(99,100,101,102,103,104,105),(106,107,108,109,110,111,112)], [(1,99,43,94),(2,100,44,95),(3,101,45,96),(4,102,46,97),(5,103,47,98),(6,104,48,92),(7,105,49,93),(8,62,112,56),(9,63,106,50),(10,57,107,51),(11,58,108,52),(12,59,109,53),(13,60,110,54),(14,61,111,55),(15,66,24,71),(16,67,25,72),(17,68,26,73),(18,69,27,74),(19,70,28,75),(20,64,22,76),(21,65,23,77),(29,79,40,85),(30,80,41,86),(31,81,42,87),(32,82,36,88),(33,83,37,89),(34,84,38,90),(35,78,39,91)], [(1,50,39,66),(2,51,40,67),(3,52,41,68),(4,53,42,69),(5,54,36,70),(6,55,37,64),(7,56,38,65),(8,90,23,105),(9,91,24,99),(10,85,25,100),(11,86,26,101),(12,87,27,102),(13,88,28,103),(14,89,22,104),(15,94,106,78),(16,95,107,79),(17,96,108,80),(18,97,109,81),(19,98,110,82),(20,92,111,83),(21,93,112,84),(29,72,44,57),(30,73,45,58),(31,74,46,59),(32,75,47,60),(33,76,48,61),(34,77,49,62),(35,71,43,63)], [(8,112),(9,106),(10,107),(11,108),(12,109),(13,110),(14,111),(15,24),(16,25),(17,26),(18,27),(19,28),(20,22),(21,23),(50,71),(51,72),(52,73),(53,74),(54,75),(55,76),(56,77),(57,67),(58,68),(59,69),(60,70),(61,64),(62,65),(63,66),(78,94),(79,95),(80,96),(81,97),(82,98),(83,92),(84,93),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,99)]])

C7×C422C2 is a maximal subgroup of
C42.159D14  C42.160D14  C4223D14  C4224D14  C42.189D14  C42.161D14  C42.162D14  C42.163D14  C42.164D14  C4225D14  C42.165D14

98 conjugacy classes

class 1 2A2B2C2D4A···4F4G4H4I7A···7F14A···14R14S···14X28A···28AJ28AK···28BB
order122224···44447···714···1414···1428···2828···28
size111142···24441···11···14···42···24···4

98 irreducible representations

dim1111111122
type++++
imageC1C2C2C2C7C14C14C14C4○D4C7×C4○D4
kernelC7×C422C2C4×C28C7×C22⋊C4C7×C4⋊C4C422C2C42C22⋊C4C4⋊C4C14C2
# reps1133661818636

Matrix representation of C7×C422C2 in GL4(𝔽29) generated by

20000
02000
00230
00023
,
01200
17000
00120
00012
,
0100
28000
0001
0010
,
1000
02800
0010
00028
G:=sub<GL(4,GF(29))| [20,0,0,0,0,20,0,0,0,0,23,0,0,0,0,23],[0,17,0,0,12,0,0,0,0,0,12,0,0,0,0,12],[0,28,0,0,1,0,0,0,0,0,0,1,0,0,1,0],[1,0,0,0,0,28,0,0,0,0,1,0,0,0,0,28] >;

C7×C422C2 in GAP, Magma, Sage, TeX

C_7\times C_4^2\rtimes_2C_2
% in TeX

G:=Group("C7xC4^2:2C2");
// GroupNames label

G:=SmallGroup(224,161);
// by ID

G=gap.SmallGroup(224,161);
# by ID

G:=PCGroup([6,-2,-2,-2,-7,-2,-2,697,1015,2090,266]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^4=c^4=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=b*c^2,d*c*d=b^2*c^-1>;
// generators/relations

׿
×
𝔽